If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+146x+1104=0
a = 1; b = 146; c = +1104;
Δ = b2-4ac
Δ = 1462-4·1·1104
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(146)-130}{2*1}=\frac{-276}{2} =-138 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(146)+130}{2*1}=\frac{-16}{2} =-8 $
| g/31=-21 | | -8(t-2)-(t+4)=3 | | 6b+b-9=30 | | 54=4x-6 | | -19-15q=-4q-9q+13 | | F=17(-3)-5x | | x²+3-1=0 | | 54=10v-6 | | 4(-x+10)=-x-15-3x | | 63+2x9=180 | | -4d=-3d-19 | | 46=10+6w | | 4(2x-1)=-2(5x-6)-1 | | -536=m+-818 | | t–110=-90 | | 38-3x=50-5x | | x÷6=10 | | 2x1+109=180 | | |-2m+7|=8 | | 2(x+3.5)^2+23.5=24 | | -12m-1=-15-13m | | 32=4(b-69) | | -3-4n-17=25 | | (x+3,5)^2=1/4 | | u−459=410 | | 5x+1=3x+19= | | 6y+4=6+5y | | 11y-4=56-y | | 0=-16x^2+36x+6 | | s−-404=707 | | 10.5g-18.91+4g=18.71+16.4g | | t/5-1=3 |